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Società Italiana di Fisica
Springer-Verlag 2000

Some exact results on the ultrametric overlap distribution
in mean field spin glass models (I)

F. Baffioni1,a and F. Rosati2,b
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Abstract. The mean field spin glass model is analyzed by a combination of exact methods and a simple
Ansatz. The method exploited is general, and can be applied to others disordered mean field models such
as, e.g., neural networks. It is well known that the probability measure of overlaps among replicas carries
the whole physical content of these models. A functional order parameter of Parisi type is introduced by
rigorous methods, according to previous works by F. Guerra. By the Ansatz that the functional order
parameter is the correct order parameter of the model, we explicitly find the full overlap distribution.
The physical interpretation of the functional order parameter is obtained, and ultrametricity of overlaps
is derived as a natural consequence of a branching diffusion process. It is shown by explicit construction
that ultrametricity of the 3-replicas overlap distribution together with the Ghirlanda–Guerra relations
determines the distribution of overlaps among s replicas, for any s, in terms of the one-overlap distribution.

PACS. 05.20.-y Classical statistical mechanics – 64.70.Pf Glass transitions – 75.10.Nr Spin-glass and
other random models

1 Introduction

Mean field spin glass models are considered as a prototype
of disordered, frustrated systems and, more generally, of
a large class of complex systems that can be successfully
analyzed using the ideas developed in the study of spin
glasses [2,15]. Among these, the Sherrington–Kirkpatrick
model [1] has a primary importance. This model is by
now well understood in its general features, as described
by G. Parisi with an ingenious method and the ultramet-
ric Ansatz [2]. This picture has been confirmed by exten-
sive numerical simulations [14,15] and some rigorous re-
sults [3–5,8,9,13]. In particular, F. Guerra has given a
rigorous motivation for the introduction of a functional
order parameter of Parisi type, and has shown how in this
framework a simple Ansatz allows to express the thermo-
dynamic variables and some physical observables in terms
of that order parameter [5,7].

In the present paper, the Ansatz of Guerra is extended,
and is developed a method to express all physical ob-
servables in terms of the functional order parameter, in a
framework which is completely different from the replica
method of [2]. The method exploited is general, and can be
applied to other mean field disordered models such as the
multi-spin interaction spin glass and the neural networks.

a e-mail: baffioni@mat.uniroma2.it
b e-mail: Francesco.Rosati@roma2.infn.it

It is well known that the whole physical content of
mean field spin glass models is contained in the overlap
random variables. Given s replicas there are s(s − 1)/2
overlaps between them, where s ranges on the natural
numbers. Therefore, the physics of the model is fully
contained in a probability distribution on an infinite-
dimensional space. Overlaps do not fluctuate in the high
temperature phase: the Sherrington–Kirkpatrick solution
turns out to be correct and the overlap distribution is
trivial. In the low temperature phase this cannot happen:
overlaps do fluctuate [2,3,5,8].

Fluctuations are constrained by the symmetry un-
der permutations of replicas and by the gauge sym-
metry. Thermodynamical constraints are expressed by
Ghirlanda–Guerra relations, in the slightly stronger case
when suitable infinitesimal interactions are added to the
Hamiltonian [8,11] (this is also known as the stochastic
stability property [12,13]). By the Ansatz that the over-
lap distribution is ultrametric, Parisi gave a solution of
the model, in terms of a functional order parameter [2].
Ultrametricity is a simple constraint on the support that
considerably simplifies the overlap distribution: together
with the previously stated constraints, it reduces the prob-
lem to the determination of the mono-dimensional, one-
overlap distribution P12. This is proven in the last section
of this paper.

A functional order parameter of Parisi type can be
introduced rigorously to give a functional representa-
tion of the marginal martingale function, and therefore
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of the free energy [5]. This representation is not unique:
there is an infinite set of functional order parameters giv-
ing rise to the same free energy. By an Ansatz on this rep-
resentation, some overlap correlation functions has been
expressed through the functional order parameter [7]. In
this paper, by an extension of the Ansatz, we explicitly find
the full overlap distribution in terms of the functional or-
der parameter, and we show how ultrametricity naturally
emerges.

The method (and the paper) goes as follows. We in-
troduce a generating functional of physical observables
(i.e., expectations of overlap functions), derived from the
marginal martingale function (Sect. 3). Through the solu-
tion of a non-linear antiparabolic equation, and exploiting
the Ansatz, we represent it in terms of the functional or-
der parameter x (Sect. 4). Then, we solve the antiparabolic
equation by asymptotic expansion and explicitly find the
overlap probability distribution. The physical interpreta-
tion of the functional order parameter is obtained, and
ultrametricity of overlaps is derived as a natural conse-
quence of the branching diffusion process underlying the
equation (Sect. 5).

Finally, it is shown that complete ultrametricity of
overlaps results from ultrametricity of the 3-replicas over-
lap distribution. Moreover, it is proved that ultrametricity
and the Ghirlanda–Guerra identities are complementary
in order to determine the full overlap distribution, in the
sense that one can hold independently of the other, but
together they determine explicitly the overlap measure in
terms of the one-overlap distribution P12 (Sect. 6).

2 Overlaps in the Sherrington–Kirkpatrick
model

The mean field model of a spin glass is defined on sites i =
1, 2, . . . , N . To each site is assigned the Ising spin variable
σi = ±1, so that a configuration of the system is described
by the application σ: i → σi ∈ Z2 = {−1, 1}. The spins
on two different sites i and j are coupled through the
random variables Jij , all independent from each other and
equally distributed. For the sake of simplicity we assume
a Gaussian distribution, with

E(Jij) = 0, E(J2
ij) = 1, (1)

where E denotes averages on the J variables. The Jij ’s are
called quenched variables, because they do not participate
to thermalisation. The Hamiltonian of the Sherrington–
Kirkpatrick model is

HN (σ, J) = − 1√
N

∑
(i,j)

Jijσiσj , (2)

where the sum extends over all the N(N − 1)/2 couples
of sites. The normalization factor 1/

√
N is needed to have

the correct behavior of the thermodynamic variables in
the limit N → ∞. Denoting with β the inverse tempera-
ture (in proper units), we introduce the partition function

ZN(β, J) and the free energy density fN (β, J):

ZN(β, J) =
∑

σ1...σN

e−βHN (σ,J), (3)

−βfN(β, J) =
1
N

logZN (β, J). (4)

The associated Boltzmann state ωN,β,J is defined by

ωN,β,J(A) =
1

ZN (β, J)

∑
σ1...σN

A(σ)e−βHN (σ,J), (5)

for a generic function A of the spin variables. Another
relevant quantity is the average of internal energy density
uN(β):

uN(β) =
1
N
E ωN,β,J(HN (σ, J))

= E
∂

∂β
(βfN (β, J)). (6)

In the thermodynamic limit the free energy density is self-
averaging in quadratic mean [3]. For the internal energy
density the same property has been proven for almost all
values of β, but is believed to hold without restrictions [8].

One of the main features of the mean field spin glass
model is the existence of observables that do not self-
average in the thermodynamic limit. This is one of the
fundamental intuitions contained in the Parisi Ansatz of
replica symmetry breaking. Indeed Pastur and Shcherbina
have proven that if a suitably chosen order parameter
(coming from the response of the system to an exter-
nal random field) is self-averaging in the thermodynamic
limit, then the solution of the model has the Sherrington–
Kirkpatrick form [3,4]: this is unphysical at high β, be-
cause it gives negative entropy. Moreover, self-averaging
of the Edward–Anderson order parameter implies that the
overlap distribution is the trivial one corresponding to the
replica symmetric Ansatz of S.–K. [8].

Let us consider s copies (replicas) of the system,
whose configurations are given by the Ising spin variables
σ

(1)
i , . . . , σ

(s)
i , and denote with ω

(a)
J , a = 1, 2, . . . , s the

relative Boltzmann states, the dependence on β and N
being understood. We introduce the product state ΩJ by

ΩJ = ω
(1)
J ω

(2)
J · · ·ω

(s)
J , (7)

where all the states ω(a)
J are subject to the same values of

the quenched variables J , and the same temperature β.
The overlap between the two replicas a and b, Qab, is

defined by

Qab =
1
N

∑
i

σ
(a)
i σ

(b)
i , (8)

with the obvious bounds −1 ≤ Qab ≤ 1.
The importance of overlaps lies in the fact that all

physical observables can be expressed in the form

EΩJ [F (Q12, Q13, . . . )], (9)
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for some function F . For F smooth, we can introduce
the random variables q12, q13, . . . , through the definition
of their averages

〈F (q12, q13, . . . )〉 = EΩJ [F (Q12, Q13, . . . )]. (10)

Notice that the expectation 〈·〉 includes both the ther-
mal average and the average E over disorder. The over-
lap distribution carries the whole physical content of the
model [8].

Let us recall some considerations about the overlap
distribution. The average E over quenched variables in-
troduces correlation between different groups of replicas.
For example we have, in general,

〈q2
12q

2
34〉 6= 〈q2

12〉〈q2
34〉. (11)

The 〈·〉 average is obviously invariant under permutations
of replica indices (e.g. 〈q2

12q
2
13〉 = 〈q2

23q
2
13〉, 〈q2

12〉 = 〈q2
34〉).

Moreover, it is invariant under the gauge transformations
defined by

qab −→ εaqabεb, (12)

where εa = ±1. This is an easy consequence of the fact
that each of the ω(a)

J is an even state on the respective σ(a).
It follows, for instance, that polynomials in the overlaps
which are not gauge invariant have zero mean. These sym-
metries furnish important restrictions on the the overlap
distribution, but even more important constraints have
been given by [8,11], using simple arguments based on
convexity properties and positivity of fluctuations. Con-
sider s replicas, and the s(s−1)/2 overlaps between them.
Let us denote by As the associated algebra of observ-
ables. Introduce the overlap qa,s+1, between replica a and
an additional replica s + 1, and consider the conditional
probability distribution P̃(a,s+1)(qa,s+1|As) of qa,s+1 given
the overlaps among the first s replicas. By adding to the
Hamiltonian suitable infinitesimal external fields, and tak-
ing the thermodynamic limit with a careful procedure,
Guerra and Ghirlanda have demonstrated that the follow-
ing theorem holds for a very general class of probability
measures, including short range models [11].

Theorem 2.1 Given the overlaps among s replicas, the
overlap between one of these, let say a, and an additional
replica s+ 1 is either independent of the former overlaps,
or it is identical to one of the overlaps qab, with b run-
ning from 1 to s, excluding a. Each of these cases have
probability 1/s:

P̃(a,s+1)(qa,s+1|As) =
1
s
P12(qa,s+1)

+
1
s

∑
b6=a

δ(qa,s+1 − qab). (13)

Results of this kind have been obtained by Parisi in the
frame of replica method [12], and by Aizenmann and
Contucci [13].

3 A generator of overlap distributions

Let ω be a generic even state on the Ising spins σ1, . . . , σN ,
possibly depending on the quenched variables Jij and
let f1 : R −→ R be an even, convex function, such that
|f1(y)| ≤ c|y| asymptotically with |y| → ∞ for some posi-
tive c. We will denote by F1 the set of all such functions.
Let us introduce the generating functional ψN (ω, f1), de-
fined as follows

ψN (ω, f1) = E logω(exp f1(hN (σ, J))), (14)

where hN(σ, J) = N−1/2
∑
i Jiσi is the cavity field, and

the Ji’s are fresh noise with the same properties of Jij .
The functional ψN (ω, f1) contains all informations on
the distribution of the replicated cavity fields h(a) ≡
hN(σ(a), J). That, in turn, is related to the overlap distri-
bution through the well known formula

EΩJ
(

exp
(

i
∑
akah

(a)
))

=
〈

exp
(
−
∑
a,bkakbqab/2

)〉
.

(15)

Let us expand the logarithm in a formal power series, in-
troducing replicas

ψN (ω, f1) = E
(

ln
(

1− ω
(

1− ef1(h)
)))

= −
∞∑
s=1

1
s
E
(
ω
(

1− ef1(h)
))s

= −
∞∑
s=1

1
s
EΩJ

(
s∏

a=1

(
1− ef1 (h(a))

))
(16)

where h denotes the cavity field and h(a) its replicas.
Let us introduce the generalized Fourier transform φ,

which is a well defined even generalized function:

1− exp (f1(y)) =
∫ ∞
−∞

dk φ(k)eiky (17)

By the convenient replacement ϕ(k) ≡ φ(k) exp(−k2/2),
we finally obtain

ψN (ω, f1) = −
∞∑
s=1

1
s

∫
dsk

×
s∏
a=1

ϕ(ka)
〈

exp
(
−
∑

(a,b) kakbqab
)〉

(18)

where the sum in the exponential is over the couples (a, b),
for 1 ≤ a < b ≤ s. The dependence of the r.h.s. on f1 is
through the function ϕ. Notice that terms s = 2, 3 contain
the characteristic functions of the distributions of overlaps
among 2 and 3 replicas, respectively.

It is important to notice that the thermody-
namic functions can be represented through the
functional ψN (ω, f1). Consider the case f1(y) =
log coshβy, and the corresponding function ψ?N (β) ≡
ψN (ω, log coshβ ·), where ω is the Boltzman state of SK
model. Then the following holds [5].
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Proposition 3.1 Assume the existence of the limit
limN→∞ ψ

?
N (β) = ψ?(β), uniformly on a compact region

0 ≤ β ≤ β̃, with ψ? continuous in β, as a consequence.
Let us define

α(β) = log 2 +
∫ 1

0

ψ?(β
√

1− q) dq, (19)

so that the β derivative α′(β) exists and the following holds

α(β) + βα′(β)/2 = log 2 + ψ?(β). (20)

Then, we have, for 0 ≤ β ≤ β̃,

lim
N→∞

1
N
E (logZN (β, J)) = α(β),

lim
N→∞

1
N
∂βE (logZN (β, J)) = α′(β). (21)

4 The functional order parameter

In the frame of the cavity method, a functional order pa-
rameter of Parisi type was introduced by Guerra as a
functional representation of the marginal martingale func-
tion [5]. Then, he showed that by a simple Ansatz some
overlap correlation functions can be expressed in terms of
the functional order parameter [7].

In this section we give an extension of the representa-
tion theorem, thus obtaining a functional representation of
the physical observables. Exploiting the Ansatz, the gen-
erating functional ψN (ω, f1) is expressed in terms of the
functional order parameter. Therefore, the explicit form
of the overlap distribution can be extracted.

Let us introduce the convex set X of functional order
parameters of the type

x : [0, 1] 3 q −→ x(q) ∈ [0, 1], (22)

with the L1(dq) distance norm. We induce on X a partial
ordering, by defining x ≤ x̄ if x(q) ≤ x̄(q) for all 0 ≤ q ≤ 1,
and introduce the extremal order parameters x0(q) ≡ 0
and x1(q) ≡ 1, such that for any x we have x0(q) ≤ x(q) ≤
x1(q).

For each x in X , and for f1 ∈ F1 (see the pre-
vious section), let us define the function with values
f(q, y; x, f1), 0 ≤ q ≤ 1, y ∈ R, as the solution of the
nonlinear antiparabolic equation

∂qf +
1
2

(f ′′ + x(q)f ′2) = 0, (23)

with final condition

f(1, y; x, f1) = f1(y). (24)

In (23), f ′ = ∂yf and f ′′ = ∂2
yf .

With these definitions, the following representation
theorem holds [5].

Theorem 4.1 There exists a nonempty hyper-surface
ΣN(ω, f1) in X such that, for any x ∈ ΣN (ω, f1) and f
solution of (23, 24), we have the following representation

ψN (ω, f1) = f(0, 0; x, f1). (25)

Any family of functional order parameters, xε, depending
continuously in the L

1
norm on the variable ε, 0 ≤ ε ≤ 1,

with x0 ≡ 0, and x1 ≡ 1, and nondecreasing in ε, must
necessarily cross ΣN(ω, f1) for some value of the variable
ε (we say that ΣN (ω, f1) has the monotone intersection
property). A similar representation holds also in the infi-
nite volume limit.

Of particular interest are those states ω such that the
representation (25) holds with some x, depending on ω,
but independent on f1, with some possible error vanishing
in the limit N →∞. We call such states x-representable.
Some examples of x-representable states are shown in [7].

An attractive conjecture is that the Boltzmann state
of mean field spin glass models is x-representable. Indeed,
this must be the case if x is the correct order parameter.
We will refer to this as the tomographic Ansatz: in the
X space the hyper-surfaces {Σ∞(ω, f1), f1 ∈ F1} have a
common point x, which gives the physical content of the
theory. By this Ansatz, we can express the full probability
distribution of overlaps in terms of the functional order
parameter. Let us state the following theorem, one of the
main results of this paper, leaving the proof to the next
sections.

Theorem 4.2 Let ω be an even state on the Ising spin
variables σi, depending on the quenched variables J , and
suppose it is x-representable, with x(0) = 0 and x(1) = 1.
Then the following holds.

a) The probability distributions of overlaps among s =
2, 3 replicas are given in terms of the functional order
parameter x by the following expressions:

P12(q) ≡ P (q) =
d
dq
x(q), (26)

P12,23,13(q12, q23, q13) =
1
2
x(q12)P (q12)

× δ(q12 − q23)δ(q12 − q13) +
1
2

(P (q12)P (q23)

× θ(q12 − q23)δ(q13 − q23) + cyclic perm.). (27)

b) Assume in addition the hypothesis of Theorem 2.1.
Then the overlap distribution is uniquely determined
in terms of the functional order parameter x, and the
s-replicas marginals (i.e., the distribution of overlaps
among s replicas) can be given explicitly for any s (see
Sect. 6).

We have used Dirac’s δ function and the step function θ.
Extension to regions of negative q’s is made by gauge sym-
metry, as shown in the next section. Equation (26) gives
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the physical meaning of the functional order parameter;
equation (27) corresponds to ultrametricity of the overlap
distribution, as is proven in the following. For other values
of x(0) and x(1), slightly different results can be obtained.

As is shown extensively in the next section, ultra-
metricity arises naturally as a consequence of the branch-
ing diffusion process underlying equation (23, 24).

All results are in full agreement with those found in the
frame of replica symmetry breaking method with Parisi
Ansatz [2].

5 Asymptotic solution of the antiparabolic
equation

The results (26, 27) of Theorem 4.2 are obtained by equa-
tion (25), and the tomographic Ansatz. Both members of
equation (25) are expressed as asymptotic series, which
are then compared term by term, exploiting the unique-
ness of asymptotic expansions. The first one is given by
equation (18), the second is obtained in this section.

Let us transform equation (23, 24)∂q fq +
1
2

(
f ′′q + xq f

′
q
2
)

= 0

f(1, y;x, f1) = f1(y)

into an equivalent form. When x(0) = 0 and x(1) = 1,
satisfied by physical order parameters, it is convenient to
make the substitution

gq (y) = [1− exp (xq fq(y))] /xq (28)

the x and f1 dependence of f being understood. Therefore
we have, writing for shorts ρq ≡ dxq/dq

∂qg = −∂qf exf − ρ
(
1− exf

)
/x2 − ρf exf

= −∂qf exf − ρ (xg − (1− xg) ln(1− xg)) /x2

g′ = −f ′ exf

g′′ = −
(
f ′′ + xf ′

2
)

exf

(29)

by summing the first to half the third equation, we have∂q gq+
1
2
g′′q =−ρq [xq gq+(1−xq gq) ln(1−xq gq)] / x2

q

g(1, y;x, f1) ≡ g1(y) = 1− exp (f1(y))
(30)

Notice that the final condition for g is equal to the function
used in the expansion of ψN (ω, f1) (Eq. (16)), and that
g(0, y) = f(0, y). Let us re-write equation (30) in integral
form:

gq = N1−q ∗ g1 −
∫ 1

q

dq′
ρq′

x2
q′
Nq′−q ∗

[xq′ gq′ + (1− xq′ gq′) ln(1− xq′ gq′)] (31)

as one can straightforwardly see by simple inspection.
Here Nq ≡ N(q, y) = exp

(
−y2/2q

)
/
√

2πq is the usual
heat kernel and the symbol ∗ is the convolution operation
on y variable1

Equation (31) can be handled by asymptotic expansion
of the r.h.s. term under square brackets:

gq = N1−q ∗ g1 +
∞∑
i=2

1
i(i− 1)∫ 1

q

dq′ ρq′ x
(i−2)
q′ Nq′−q ∗

[
(gq′)

i
]
. (32)

We write the above equation in the “momenta space”: let
ηq be the Fourier transform of Nq∗gq in the y variable and
ϕ that of N1 ∗ g1 . Thus we have, after simple algebraic
manipulation

ηz = ϕz + Fz [η] (33)

where z is a collective variable for (q, k), ϕz ≡ ϕ(k) is
the same function appearing in equation (18), Fz [η] is a
function of z and a functional of η

Fz [η] ≡
∞∑
i=2

1
i!
Ô

(i)

z [η, . . . , η] (34)

and the Ô
(i)

z are well defined multi-linear integral
operators

Ô
(i)

z [ϕ1 , . . . , ϕi] ≡ (i− 2)!
∫

dik δ(k1 + · · ·+ ki − k)

×
i∏

a=1

ϕa(ka)
∫ 1

q

dq′ρq′ xq′ i−2 exp(−q′
∑
(a,b)

kakb).

Every term in the asymptotic expansion is well de-
fined. Notice that the representation Theorem 4.1 can be
rephrased as

ψN (ω, f1) = −g(0, 0) = −
∫

dk η(0, k) (35)

and this is the form that we will use in the sequel.
The ith functional derivative of Fz [η] w.r.t. η calcu-

lated in zero gives the integral kernel of the Ô
(i)

z operator.
In particular

Fz [η]|η=0 = 0;
δFz [η]
δηw

∣∣∣∣
η=0

= 0. (36)

Replacing η = L[ϕ] in (33) we have

Lz [ϕ] ≡ ϕz + Fz [L[ϕ]] , (37)

which defines iteratively the inverse functional Lz [ . ]:

Lz [ϕ] =
∞∑
s=1

1
s!

∫
dik

s∏
a=1

ϕ(ka) L(s)
z (k1, . . . , ks). (38)

1 (f ∗ g)(y) ≡
R

dy′f(y − y′) g(y′).
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It is easy to check that

Lz [ϕ]|ϕ=0 = 0
δLz [ϕ]
δϕw

∣∣∣∣
ϕ=0

= δz−w (39)

where δz−w is the usual Dirac’s function, and that, by
derivating (37) w.r.t. ϕ,

δLz [ϕ]
δϕw

≡ δz−w +
∫

dw′
δFz
δηw′

[L[ϕ]]
δLw′ [ϕ]
δϕw

· (40)

Subsequent functional derivatives w.r.t. ϕ, calculated in
ϕ ≡ 0, and the properties (36) and (39) allow us to obtain
straightforwardly all the integral kernels L(s)

z (k1, . . . , ks)
for any s, in terms of Ô

(i)

z operators. We thus obtain∫
dk η(0, k) =

∞∑
s=1

1
s

∫
dsk

s∏
a=1

ϕ(ka)
1

(s− 1)!
L(s)
o (k1, . . . , ks) (41)

where L(s)
o (k1, . . . , ks) are the integral kernels, calculated

for q = 0 and integrated on the overall delta dependence
in the k variable. They are of the form:

1
(s− 1)!

L(s)
o (k1, . . . , ks) =∫ ∏

(a,b)

dyab ρ
(+)

s ({yab}) exp
(
−
∑

(a,b) kakbyab
)

(42)

where ρ
(+)

s has support on a subset of [0, 1]s(s−1)/2. In
appendix we report the explicit expressions of ρ

(+)

s , for
s = 2, 3, 4 and the recipe to construct it for a generic s.
Because of equation (35), the asymptotic expansions in
(18) and (41) must be equal term by term. As the func-
tion ϕ(k) is even, only the even part in the k’s of integral
kernels from both sides can be equated. Let us define on
[−1, 1]s(s−1)/2 the function ρs, extending by “gauge sym-
metry” the function ρ

(+)

s

ρs({yab}) = 2−s
∑
{ε}

ρ
(+)

s ({εayabεb})

= 2−(s−1)
∑

{ε}:ε1=1

ρ
(+)

s ({εayabεb}) (43)

where the sums run over all the εa = ±1, a = 2, . . . , s
and ρ

(+)

s = 0 if its argument is outside [0, 1]s(s−1)/2; we
have used the invariance εa −→ −εa to fix ε1 = 1 in the
second line. We finally have〈

exp
(
−
∑

(a,b) kakbqab
)〉

=∫ ∏
(a,b)

dyab ρs({yab}) exp
(
−
∑

(a,b) kakbyab
)

(44)

which proves part a of Theorem 4.2.

For s > 3 the l.h.s. of equation (44) does not corre-
spond to the characteristic function of the overlap distri-
bution, as the number of the k’s parameters is not suffi-
cient, but to its restriction on a hyper-surface of dimension
s. In the next section, assuming the hypothesis of Theo-
rem 2.1, we show that the results obtained so far allow us
to construct the full overlap distribution function. The re-
sulting s = 4 overlap distribution coincides with ρs. This
is a strong indication that ρs is the correct distribution
also in the case of no additional interactions, as required
by Theorem 2.1.

For a generic s the distribution ρs has the ultrametric
form

ρs({yab}) =
∑

i:Asi⊂As
pi ρ

(i)

s ({yab}|Asi ) (45)

HereAsi are disjoint sets, made by portions of hyper-planes
in [−1, 1]s(s−1)/2, with dimension |Asi | ≤ s − 1; As is the
union set; pi are positive numbers, which sum to one, and
ρ

(i)

s (· · · |Asi ) are probability densities, whose supports are
the sets Asi . The r.h.s. can thus be interpreted as a com-
posite probability formula: pi is the probability that the
ultrametric event Asi happens and ρ

(i)

s (· · · |Asi ) is the over-
lap probability, conditioned to Asi . The events Asi are dis-
joint and each ρ

(i)

s effectively depends only on at most s−1
variables.

6 Ultrametric distributions

Consider the set Φ of random variables qa,b ∈ [−1, 1]:

Φ = {qa,b , (a, b) ∈ ϕ ⊂ C}, (46)

where C is the set of couples (a, b) of natural numbers
a, b ∈ IN, a < b. To the set ϕ are then associated a prob-
ability space and the probability distribution Pϕ(Φ) on
it. The distribution functions Pϕ satisfy the consistency
conditions ∫

Pϕ,ϕ′(Φ, Φ′)
∏
α∈ϕ′

dqα = Pϕ(Φ), (47)

for all disjoint sets ϕ,ϕ′ ⊂ C. In the following we will often
write {A,B} ≡ A ∪ B and ab ≡ (a, b) when not ambigu-
ous. Let us introduce the operator Πl,m that, acting on ϕ,
permutates the indices l and m. E.g.: Π12{(1, 2), (2, 3)} =
{(1, 2), (1, 3)}. Let ϕ′ = Πl,mϕ, and denote by Φ′ the as-
sociated set of q’s. According to the symmetries of the 〈−〉
average, we ask the probability measure P to be gauge in-
variant, and symmetric under permutations of indices, in
the following sense:

Pϕ′(Φ′) = Pϕ(Φ) = Pϕ(Πl,mΦ
′) ≡ (Πl,m Pϕ) (Φ′). (48)

This defines the operator Πl,m on the space of
distributions.
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Let us consider a very particular class of distributions
for the overlaps between three replicas, i.e., the ultramet-
ric distributions:

P12,23,13(q12, q23, q13) =B(q12, q23)θ(q12−q23)δ(q13−q23)
+B(q23, q12)θ(q23−q12)δ(q13−q12)
+B(q13, q23)θ(q13−q23)δ(q12−q23),

(49)

where B is a distribution. This simply states that among
the three overlaps, two are equal and the third is greater
or equal. From equation (49), a simple application of sym-
metries and of the consistency conditions (47), leads to

Proposition 6.1 If the distribution P12,23,13 is of the
form (49), then for any tern of replicas, (a, b, c), the
operator Fa,b,c is defined such that

Pab,ac,ϕ = Fa,b,c(Pab,ϕ, Pac,ϕ), (50)

where ϕ ⊂ C, (b, c) ∈ ϕ and (a, b), (a, c) 6∈ ϕ. The opera-
tor Fa,b,c is defined through its values

Fa,b,c(Pab,ϕ, Pac,ϕ)(qab, qac; Φ) = Pab,ϕ(qab;Φ)
× [θ(qab − qbc)δ(qac − qbc) +θ(qbc − qab)δ(qac − qab)]
+ Pac,ϕ(qac; Φ)θ(qac − qbc)δ(qab − qbc)− δ(qab − qbc)

× δ(qab − qac)
∫
Pac,ϕ(qac; Φ)θ(qac − qbc) dqac. (51)

Note that when the set ϕ is symmetric under permutation
of indices b, c, we can introduce the operator F̃a,b,c,

Pac,ϕ′ = F̃a,b,c(Pϕ′) ≡ Fa,b,c(Pϕ′ , Πb,cPϕ′), (52)

where ϕ′ ≡ {(a, b), ϕ}.
This property of the overlap distribution corresponds

to ultrametricity. In fact, equation (51) simply states that
for any triangle of overlaps in a given set ϕ̃, two overlaps
are equal and the third is greater or equal. The proof of
the theorem and of the subsequent lemma as well, does
not depend on the nature of the q·,· variables, but only on
symmetries and general properties of probability spaces.

Lemma 6.1 In the hypothesis of theorem 6.1 we can ex-
press the probability distribution of the overlaps between
s + 1 replicas in terms of the distribution of the overlaps
between s replicas and q1,s+1 (for s ≥ 3).

The proof goes as follows. Given s ≥ 3 and l ≤ s, we define
the set ϕs,l by

ϕs,l ≡ {(a, b), 1 ≤ a < b ≤ s} ∪ {(c, s+ 1), 1 ≤ c ≤ l},
(53)

such that the following simple relations hold:

{(l + 1, s+ 1), ϕs,l} = ϕs,l+1, (54)
ϕs,s = ϕs+1,0. (55)

Applying formula (52), with l + 1 ≤ s, we have

Pϕs,l+1 = P(l+1,s+1),ϕs,l = F̃s+1,1,l+1(Pϕs,l). (56)

By iteration we have the thesis

Pϕs+1,0 = F̃s+1,1,s . . . F̃s+1,1,2 (Pϕs,1). (57)

Moreover, by definition of conditional probability we have

Pϕs,1 = P̃(1,s+1) Pϕs,0 , (58)

where P̃(1,s+1) is given by equation (13). Therefore we
have proven the following

Theorem 6.1 If the 3-replicas overlap distribution
P12,23,13 is ultrametric (i.e., of the form (49)), and in the
limits of validity of theorem 2.1, the overlap distribution
is uniquely determined in terms of P12. The explicit form
of the distributions of overlaps among s replicas, for any
s (i.e., the s-replicas marginals Pϕs,0), can be calculated
by repeated applications of equations (57, 58).

Since Theorem 4.2.a proves the hypothesis of Theorem 6.1
in the case of mean field spin glass models, this completes
the proof of its part b.

The explicit construction (57, 58) clearly shows that
ultrametricity and the Ghirlanda–Guerra relations can be
considered as complementary in order to determine the
full overlap distribution, in the sense that one can hold
independently of the other, but together they determine
explicitly the overlap measure in terms of the one-overlap
distribution.

Results of this kind were obtained by Parisi in refer-
ence [12].

7 Conclusions

It has been shown how mean field disordered models can
be successfully analyzed using exact methods, with a sim-
ple Ansatz which is completely different from the Replica
Simmetry Breaking Ansatz. In the S.–K. spin glasses case,
the main features of the accepted physical solution – the
Parisi solution – have been obtained. The method ex-
ploited, due to Guerra, is based on the cavity method and
general theorems, and can therefore be applied to other
disordered mean field models such as the multi-spin inter-
action spin glasses or neural networks.

The functional order parameter x(q) has been intro-
duced in the S.–K. model. By the Ansatz that x is indeed
the correct order parameter, all physical observables have
been expressed in terms of it. The physical interpretation
of the functional order parameter (i.e. dx(q)/dq = P (q))
results, and ultrametricity of overlaps is derived as a nat-
ural consequence of a branching diffusion process.

It has been shown by explicit construction that ultra-
metricity of the 3-replicas overlap distribution together
with the Ghirlanda–Guerra relations determines the dis-
tribution of overlaps among s replicas, for any s, in terms
of P12.

The authors wish to express their warmest thanks to F. Guerra,
for fruitful suggestions and stimulating discussions.
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ρ
(+)

4 ({yab}) =
1

3

Z 1

0

dq ρ(q)x2(q)
Y

(a,b)⊂G4

δ(yab − q) +
1

6

X
π

(6)

Z 1

0

dq

Z 1

q

dq′ ρ(q)x(q)ρ(q′) δ(yπ1π2 − q′)

×
Y

(a,b)⊂G4\(π1,π2)

δ(yab − q) +
1

6

X
π

(4)

Z 1

0

dq

Z 1

q

dq′ ρ(q)ρ(q′)x(q′)
Y

(a,b)⊂G3(π1,π2,π3)

δ(yab − q′)

×
Y

(a,b)⊂G4\G3(π1,π2,π3)

δ(yab − q) +
1

6

X
π

(3)

Z 1

0

dq

Z 1

q

dq′
Z 1

q

dq′′ ρ(q)ρ(q′)ρ(q′′) δ(yπ1π2 − q′)δ(yπ3π4 − q′′)

×
Y

(a,b)⊂G4\{(π1,π2),(π3,π4)}

δ(yab − q) +
1

6

X
π

(12)

Z 1

0

dq

Z 1

q

dq′
Z 1

q′
dq′′ ρ(q)ρ(q′)ρ(q′′) δ(yπ1π2 − q′′)

×
Y

(a,b)⊂G3(π1,π2,π3)\(π1,π2)

δ(yab − q′)
Y

(a,b)⊂G4\G3(π1,π2,π3)

δ(yab − q)

(61)

Appendix

We report the explicit expressions of ρ
(+)

s ({yab}) for s =
2, 3, 4. For two replicas we have

ρ
(+)

2 (y12) =
∫ 1

0

dq ρ(q) δ(y12 − q) (62)

for three replicas

ρ
(+)

3 ({yab}) =
1
2

∫ 1

0

dq ρ(q)x(q)
∏

(a,b)⊂G3

δ(yab − q)

+
1
2

∑
π

(3)

∫ 1

0

dq
∫ 1

q

dq′ ρ(q) ρ(q′)

× δ(yπ1π2 − q′)
∏

(a,b)⊂G3\(π1,π2)

δ(yab − q)

(63)

and for four replicas

see equation (61) above.

Here Gr(i1, . . . , ir) is the complete graph with vertices
(i1, . . . , ir) ⊆ {1, · · · , s} 2;

∑
π

(n) indicates the sum on
all different n permutations π on Gr vertices’ indexes,
which render permutation invariant the associated mea-
sure. The numbers pi, the probabilities of different ul-
trametric events, are obtained by normalizing the corre-
sponding measures; counting together the permutations
of variables they are, for three replicas, (1/4, 3/4) and for
four replicas (1/9, 1/6, 2/9, 1/6, 1/3).

The recipe to construct ρ
(+)

s ({yab}) is based on the
construction of abstract trees with a root and s “leaves”,
which carry the indices yab The ρ

(+)

s is given by a sum
2 clearly Gs ≡ Gs(1, . . . , s) = ϕs,0.

on all such trees constructed by elementary branchings:
each element in the sum is an integral on at most s − 1
variables of the weight wT ( . ) associated with the tree T .
For T given, wT is the product of the combinatorial factor
[(s − 1)!]−1 times the weights of the branchings forming
the tree3 and suitable θ and δ functions on the integral
variables and the the output variables yab, according to
the tree structure.

A simple way to deduce the number of structurally
equivalent graphs, goes as follow: we use a scale transfor-
mation in (37) to obtain the generic term L

(s)
z [ϕ, . . . , ϕ] in

terms of {L(s′)
. [ϕ, . . . , ϕ]}, for 1 ≤ s′ < s in the expansion

of Lz [ϕ] ≡
∑
L

(s)
z [ϕ, . . . , ϕ] /s!. Let ϕ −→ λ ϕ be this

scale transformation: it is L
1

z [ϕ] = ϕz and, for s ≥ 2

∞∑
s=2

λs

s!
L(s)
z [ϕ, . . . , ϕ] =

∞∑
i=2

λi

i!
Ô

(i)

z

×

 ∞∑
s1=2

λs1−1

s1 !
L(s1)
. [ϕ] , . . . ,

∞∑
si=2

λsi−1

si!
L(si)
. [ϕ]

 (62)

By multilinearity of the operators, equating terms with
equal powers of λ, we have

L(s)
z [ϕ, . . . , ϕ] =

s∑
i=2

∑
{mj}

′

×
(
Ô

(i)

z

[
(L

(1)
[ϕ])m1 , . . . , (L(s−1) [ϕ])ms−1

])
(S)

(63)

the sum
∑′
{mj} is on allmj ≥ 0 with the bounds

∑
jmj =

i and
∑
j jmj = s; (Lj[ϕ])mj is briefly for mj repetitions

3 a branching formed by an input and, say, i outputs, has a
weight wi(q) = (i− 2)! ρq xq

i−2.
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of Lj [ϕ] operator as argument of Ô
(i)

z and finally (S) is
the symmetrical factor in the ϕ’s given by

S =
s!

m1! · · ·ms−1! 2!m2 · · · (s− 1)!ms−1
(64)

which counts all structurally equivalent graphs.
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